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Introduction 

This project involves study of electrodeposition and electrocodeposition in 

low g, and applications of this process. During the course of our investiga- 

tions we hope to provide a better understanding of (a) the role of convection 

and buoyancy in the mechanisms for formation of some electrodeposited surfaces, 

(b) fluid flow in the vicinity of electrodepositing surfaces, (c) the influence 

of (lack of) a moving medium upon codeposition, (d) the effect of gravity upon 

the dispersion (coagulation) of neutral particles that are desired for codeposi- 

tion and (e) preparation of improved surface coatings and metal catalysts. As 

pointed out previously there is evidence for peculiarities during low g electro- 

deposition of at least two of the systems we have chosen f o r  investigation.1 

Whether for purely scientific or applications reasons these particular systems 

require further study. 

Background 

1. Simple Electrodepnsition 

We consider the reduction of a metallic cation in aqueous solution at the 

cathode: 
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Mn+(aq) + ne- + M(s) (1) 

where e- denotes an electron and M(s) represents metal atoms depositing on the 

cathode. Assuming one dimensional flow, the concentration of Ions in the 

vicinity of a diffusion controlled electrode may be found by solving Fick's 

second law 

dC(x,t) d2C 
- c .  

dt dx2 

This represents the time variation of cation concentration C in a plane parallel 

to the electrode at a distance x ,  where D is the diffusion coefficient for the 

cation. For constant current/flux conditions the solution of ( 2 )  becomes2 

X C(x,t) = co - - 
nF V D 2VDt 

(3) 

where I is the cell current, t- is the anion transport number, t is the time, F 

is the Faraday constant and ierfc is the integrated error function. A well 

behaved diffusion controlled electrode system should produce a concentration 

which behaves as ( 3 ) . 3  Equation (2) can also be utilized to evaluate the 

instantaneous current4.5: 

 FAD^, 

lr% t% 
it = (4) 

where A is the area of the electrode :nd CO is the initial or bulk concentration 

of the cation in the cell. Equation (4) represents the instantaneous current at 

an electrode under diffusion control as a function of time. 
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2 .  Codeposition 

The latest theoretical treatment of electrocodeposition was .'ormulated in 

1972 by Guglielmi.6 He applies a modified Langmuir adsorption isotherm utiliz- 

ing a two step process for occlusion of the neutrals (cermets) within the form- 

ing metal matrix. Particles are initially loosely adsorbed on the surface and 

are treated as being in equilibrium with those in suspension. Guglielmi's 

treatment assumes homogeneous suspension and ionic concentrations of Cm and Co 

respectively. This results in a working equation given by 6 

Cm Wio 1 
- = -  e(A-B)r)[; + C,,,] (5) 
a nFdvo 

where a is the volume fraction of particles in the deposit, W is the atomic 

weight of the depositing metal, F Faraday's constant, n the number of electrons 

required to reduce the cation to an atom, d the metal density, voeBr) is an expo- 

nential rate factor for strong adsorption in which r) is the overpotential and 

V O ,  A and B are adjustable parameters, io is the exchange current, and k is the 

ratio of rate constants for adsorption and desorption which depends upon the 

intensity of interaction of the particles and the electrode. If the system is 

not homogeneously maintained as would be the case in low g without stirring, the 

suspended particles and solution ions would form gradients and thus equation (5) 

is not applicable. 

Experimental Work 

1. General 

The eight cell flight apparatus (Model I) has been completed and is pictured 

in Figure 1 .  It has been partially tested f o r  short 10-2 g periods on the 
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KC-135. The stirrers, camera and electrodeposition systems were tested during 

these flights. The meter systems for measuring current, voltage and tem- 

perature, and the computer interface board were not utilized. Batteries with 

dividers were used for power. 

stirring in 10-2 g, and Ni and Co surfaces were generated at 10-2 g in multiples 

of 1 2 0  second increments. Electrodeposition rates were altered by changing the 

applied voltage. It was found that the apparatus was cumbersome for the KC-135 

experiments which are more amenable to operator interaction and fast turnaround 

times. So although the apparatus functioned as designed during these limited 

tests, two smaller and simpler packages were constructed to maximize future 

KC-135 testing. These packages are pictured in Figure 2. Cells could now be 

"plugged" into position and the voltage divider approach allowed four different 

rates of electrodeposition simultaneously. 

Data was gathered on particle dispersion during 

2 .  Bench Testing 

a) Simple Electrodeposition 

Work was done on a Sn/Ni alloy cell. A composite solution of -65% 

Sn, 35% Ni is reported to produce a nice alloy plating of SnNi (1:l) 

composition.7 

low g electrodeposited alloys. Thus far the cell has produced den- 

dritic crystals (much like most silver solutions) instead of smooth 

plates. Hopefully we will solve this problem so we can run this 

system on the KC-135. 

We wanted to look for differences between bench and 

The Cos04 cell as previously reported was found to self terminate 

after 2 hours on the bench when operated in a cathode over anode 

diffusion mode.1 Hand agitation of the cell for several minutes and 
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subsequent restart lead to oscillatory behavior. Since our evidence 

showed that diffusion controlled Cos04 7H20 crystallization at the 

anode was responsible for this peculiar behavior an internal stirring 

bar was placed in the cell. When the cell terminated after about 2 

hours it was agitated magnetically. With the homogeneity of the 

solution now renewed upon restart the cell functioned as a new cell, 

running for about 2 hours before self termination. 

b) Polystyrene Neutral Buoyancy Codeposition 

This work has been frustrating but yet rewarding in terms of how to 

prepare for low g codeposition. As pointed out previously this 

attempt at physical modeling of low g codeposition has a major flaw.1 

As the electrodeposition progresses under diffusion control a concen- 

tration gradient and thus a density gradient is developing. On the 

bench this results in settling or layering of the particles due to 

the solution/particle density mismatch. The resultant settling would 

not occur in low g. However, another difficulty will result during 

diffusion control in low g, namely a neutral particle gradient. 

Since these particles are micron size, Brownian motion will be slow 

(small diffusion constants) and it is expected that particle deposi- 

tion will decrease rapidly with time producing a particle gradient in 

the codeposited surface. 

c) K1*75Pt(CN)4 1.5 H20 Crystallization 

The senior undergraduate is concentrating on cell development and 

construction. He has obtained $4,000 from Westinghouse to help sup- 

port the project. 
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Results and Conclusions 

1. Oscillatory Cell 

Utilization of a stirring bar in the cell allowed us to return the solution 

to its initial concentration homogeneously throughout the cell cavity and thus 

no oscillatory process resulted upon restart after stirring. Apparently hand 

agitation only changes the anode Cos04 7 ~ 2 0  coating and Co+2, SO4-2 gradients 

enough to bring on the oscillatory behavior. 

2. Codeposition 

One of our goals on the first KC-135 flight was to determine what happens 

when particles like Cr3C2 and diamond dust are dispersed by a stirrer in liquid. 

On our first flight we used 1 M ZnsO4 as the medium in the top two stirred cells 

of our planned space flight apparatus (Figure 1). Dispersion of the particles 

was monitored with a 35 mm camera. It was interesting to find that Cr3C2 

particles tended to coagulate into spherical balls when the stirrer was acti- 

vated in low g (Figure 3). Evidence as to the effect of the addition of wetting 

agents on this particular flight was not obtained because the film was lost. We 

could not tell from the other photographs whether the diamond dust was coagulat- 

ing o r  not. On the second KC-135 flight we used a different codeposition appa- 

ratus which was monitored with a video recorder. It was evident from the videos 

that both Cr3C2 and diamond dust clump when stirred at 10-2 g. 

cationic, cetyltrimethylammonium bromide surfactant had little effect. However, 

addition of anionic sodium dodecylsulfate resulted in good dispersion r f  the 

Cr3C2. We found no evidence f o r  coagulation of these particles when stirred in 

1 g* 

Addition of 

37 



1 

‘I 
!I 
I 
I 
I 
1 
I 
1 
1 
I 
I 
I 
I 
I 
I 
1 
I 

Scientifically this is interesting since we may have evidence for a weak 

force process that is swamped by 1 g. Zeta potential measurements would proba- 

bly be helpful in determining why an anion agent is necessary for dispersion of 

Cr3C2. From an applications standpoint homogeneous dispersion is necessary if 

we are to optimize the electrocodeposition process and our findings indicate we 

would have to determine if the particles were going to disperse anytime we 

changed particle type or solutions and if not what surfactant (if any) would aid 

in the dispersion. 

As mentioned previously, a particle gradient will be created as the codepo- 

sition procedes in low g. It would seem that advantages of a low g codeposition 

would arise from no natural convection, particle sedimention or solvent movement 

which should lead to more homogeneous and richer codeposits. However, the par- 

ticle gradient results in a time decrease in the volume fraction of particles in 

the forming surface. To obviate this problem would require some form of stir- 

ring and we must determine if the stirring should be a gentle slow continuous 

stirring with a disk as done by Ehrhardt8 or a sequence consisting of an inter- 

mittent fast stirring followed by a damping period of non electrodeposition, and 

finally a short period of electrodeposition of say 10 minutes. This sequence 

would then be repeated for 6 hours of total electrocodeposition. 

3. Catalyst Preparation 

One of our goals is to use low g to electrodeposit metals in forms that may 

improve their function as catalysts. Ehrhardts argues that an amorphous form of 

nickel results when nickel is deposited relatively fast in low g at 6 volts and 

a current of 80 mA/cm2. Since amorphous metals tend to resist acid attack, 

amorphous Ni may be a candidate f o r  an improved catalyst under acid conditions. 
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~I Likewise, if amorphous Ni is being produced, is it due to low g, fast rate, fast 

rate plus low g o r  what? We ran samples in the laboratory at 1.5, 3.0, 4.5 and 

6 . 0  volts in the cathode over anode diffusion mode and in the anode over cathode 

convection mode. We accumulated -3-5 minutes of repetitive 20 second runs on 

the KC-135 also at 1.5, 3.0, 4.5 and 6 . 0  volts. Comparisons were made of the 

surface x-ray diffraction patterns with those on the bench. Patterns for nickel 

fcc crystalline planes were identified in all cases. To determine what an 

amorphous Ni x-ray pattern looked like an Ni-P amorphous alloy was prepared by a 

chemical technique.9 

phous material consisting of only one broad peak. Comparison was also made with 

a hypothetical scan of pure amorphous Ni (prepared by a cold splat technique) 

transposed from an electron diffraction pattern which showed three broad nearest 

neighbor peaks.10 No such pattern existed in our data, only crystalline planes 

associated with a Ni fcc structure. Our strict interpretation of x-ray data, 

presented by Ehrhardt8 to demonstrate amorphous Ni electrodeposition, showed 

evidence for crystalline planes and not a typical nearest neighbor amorphous 

pattern. However, their data could be loosely interpreted as representing a 

mixture of amorphous and crystalline Ni since their x-ray peaks corresponding to 

various Ni crystalline planes were small. On the second KC-135 flight we accu- 

mulated Ni at rates associated with up to 12 volts. The x-ray data although not 

complete is not encouraging since there is still no evidence f o r  broad nearest 

neighbor peaks. Low g plates of Pd and Co were also accumulated by the same 

repetitive technique. Co was done at a relatively fast rate f o r  two pH's - 1.9 
and 4.5. Incomplete x-ray data of the cobalt gives indications of a peculiarity 

which we have not interpreted yet. 

Its x-ray pattern was typical of a nearest neighbor amor- 
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Immediate Future Planned Work 

We shall work on producing surfaces on the KC-135 and look for peculiarities 

o r  differences relative to that of a bench diffusion mode. We are assembling 

diode array spectrometer to study ion concentration gradients in the vicinity of 

an electrode on the KC-135 by a wavelength specific adsorption technique.11 We 

will work with a CuSO4 system first since it should work well with an He-Ne 

laser. We will follow this with a study of the Cos04 system for which there is 

evidence of a difference in the concentration gradient between the 1 g diffusion 

mode and the KC-135 data.4,12 Both the low g and 1 g data will be accumulated 

on the KC-135. A solution light path of 2-3 mm will be utilized to minimize 

light deflection errors.l3,14 Comparison with equation (3) should then be 

possible. Figure 4 demonstrates schematically our planned arrangement. 

Late Developments 

Data has been analyzed from the June and August KC-135 flights. 

1. Stirring/Codeposition 

In the August KC-135 fljght we performed simple experiments to determine the 

effect of solution concentration (ionic strength) on the dispersion of diamond 

dust and Cr3C2 particles. The effect of wetting agents, one cationic 

(cetyltrimethylammonium bromide) and the other anionic (sodium dodecylsulfate) 

was also investigated. The results are tabulated in Table I. As ionic strength 

increases the coagulation becomes more significant. An anionic wetting agent 

appeared to obviate the clumping. The data was gathered by visual examination 

of video tapes recorded with the apparatus of Figure 28. Different particles, 

solutions, pH effect and particle shapes (spherical) will be tested in later 

flights. Knowledge of zeta potentials would be required for a complete study 
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2. Electrodeposition 

A very fast electrodeposition rate at 12 volts (-300 ma/cm2) at 10-2 g from 

NiBFq solution gave an x-ray spectrum of only one peak. 

enhanced Raman spectroscopy showed it to be an oxide of nickel. All work to 

However, surface 

date with nickel sulfamate and nickel sulfate solutions with low, moderate and 

high rates at 10-2 g also only shows the cubic face centered pattern of crystal- 

line nickel. However, variations in the peak intensities do not follow a pat- 

tern that is explainable. It is possible that our multiple short time (20 

seconds) accumulations for 3-5 minutes lead to imprinting of structure and thus 

do not truly represent what can occur in extended low g. Work with cobalt has 

shown the tendency for low pH cobalt solutions to give cubic structures and 

higher pH to give a hexagonal form. Palladium deposited at our highest rate 

(corresponding to 12V) at 10-2 g gave an x-ray pattern consistent with face cen- 

tered cubic. 
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F i g u r e  1. 

Low g r a v i t y  o r b i t o r  e l e c t r o d e p o s i t i o n  f l i g h t  a p p a r a t u s .  
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F i g u r e  2A.  

KC-135 E l e c t r o d e p o s i t i o n  a p p a r a t u s .  ORIGINAL PAGE IS 
QE POOR QUALIW 

F i g u r e  2B. 

KC-135 P a r t i c l e  s t i r r i n g  tes t  a p p a r a t u s .  
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I F i g u r e  3. 

KC-135 C r 3 C 2  s t i r r i n g  exper iment  a t  t i m e  20 seconds a t  lo- '  g. 

ORIGINAL PAGE IS 
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